Week 07 - More Gaussian Elimination and Matrix Inversion

Week 7 - More Gaussian Elimination and Matrix Inversion #

When Gaussian Elimination Breaks Down #

  • Let $A \in \mathbb{R}^{n \times n}$ and assume that $A \to LU$ completes with a matrix $U$ that has no zero elements on its diagonal.
    • $Ax=b$ has a unique solution.

Permutation #

  • Let $p = (k_0, \ldots, k_{n-1})^T$ be a permutation vector. Then $P = P(p) = \left(\begin{array}{c} e_{k_0}^T \\ e_{k_1}^T \\ \vdots \\ e_{k_{n-1} }^T \end{array}\right)$ is said to be a permutation matrix.

    • $$\text{If}\\ p = \left(\begin{array}{c}0 \\ 1 \\ 2 \\ 3\end{array}\right)\\ \text{then}\\ P(p) = \left(\begin{array}{c c c c}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$$
  • $$P x = P(p) x = \left(\begin{array}{c} e_{k_0}^T \\ e_{k_1}^T \\ \vdots \\ e_{k_{n-1} }^T \end{array}\right) x = \left(\begin{array}{c} e_{k_0}^T x \\ e_{k_1}^T x \\ \vdots \\ e_{k_{n-1} }^T x \end{array}\right) = \left(\begin{array}{c} x_{k_0} \\ x_{k_1} \\ \vdots \\ x_{k_{n-1} } \end{array}\right)$$

  • Let

    • $$A = \left(\begin{array}{c} \widetilde a_0^T \\ \widetilde a_1^T \\ \vdots \\ \widetilde a_{n-1}^T \end{array}\right)$$
    • $$PA = P(p)A = \left(\begin{array}{c} e_{k_0}^T \\ e_{k_1}^T \\ \vdots \\ e_{k_{n-1} }^T \end{array}\right) A = \left(\begin{array}{c} \widetilde a_{k_0}^T \\ \widetilde a_{k_1}^T \\ \vdots \\ \widetilde a_{k_{n-1} }^T \end{array}\right)$$
  • Let

    • $$A = \left(\begin{array}{c | c | c | c} a_0 & a_1 & \ldots & a_{n-1} \end{array}\right)$$
    • $$AP^T = \left(\begin{array}{c | c | c | c} a_{k_0} & a_{k_1} & \ldots & a_{k_{n-1} } \end{array}\right)$$
  • If $P$ is a permutation matrix, then so is $P^T$.

Pivot matrix #

  • * Swap the $\pi$th row with the $0$th.
  • $\widetilde P(\pi) = (\widetilde P(\pi))^T$

  • Summary

    • Permutation matrices, when applied from the left, swap rows.
    • Permutation matrices, when applied from the right, swap columns.

LU factorization algorithm that incorporates row (partial) pivoting #

  • Solving $Ax = b$ then changes to
    • Compute $P, L \text{ and } U$ such that $PA = LU$.
    • Update $b:= Pb$.
    • Solve $Lz = b$ (forward substitution)
    • Solve $Ux = z$ (backward substitution)

The Inverse Matrix #

  • Definition: an n-by-n square matrix A is called invertible (also nonsingular) if there exists an n-by-n square matrix B such that $$\mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n}$$

Inverse Functions in 1D #

  • $f: \mathbb{R} \to \mathbb{R}$ maps a rea to a real and it is a bijection(both one-to-one and onto)
    • bijection means: every element in R, there is a unique output in R.
  • then
    • $f(x) = y$ has a unique solution for all $y \in \mathbb{R}$.
    • The function that maps y to x so that $g(y) = x$ is called the inverse of $f$.
    • It is denoted by $f^{-1}: \mathbb{R} \to \mathbb{R}$.
    • $f(f^{-1}(x)) = f^{-1}(f(x)) = x$

General principle #

  • If $A, B \in R^{n \times n}$ and $AB = I$, then $Ab_j = e_j$, where $b_j$ is the $j$th column of B and $e_j$ is the $j$th unit basis vector.

Properties of the inverse #

  • Assume A, B, and C are square matrices that are nonsingular. Then

    • $(\alpha B)^{-1} = \frac{1}{\alpha} B^{-1}$
    • $(AB)^{-1} = B^{-1} A^{-1}$
    • $(ABC)^{-1} = C^{-1} B^{-1} A^{-1}$
    • $(A^T)^{-1} = (A^{-1})^{T}$
    • $(A^{-1})^{-1} = A$
  • The following statements are equivalent statements about $A \in \mathbb{R}^{n \times n}$ :

    • A is nonsingular(不可逆).
    • A is invertible.
    • $A^{-1}$ exists.
    • $AA^{-1} = A^{-1}A = I$.
    • A represents a linear transformation that is a bijection.
    • Ax = b has a unique solution for all $b \in \mathbb{R}^n$.
    • $Ax = 0$ implies that $x = 0$.
    • $Ax = e_j$ has a solution for all $j \in {0, \ldots, n-1}$.
    • The determinant of A is nonzero: $\text{det}(A) \ne 0$. Will talk this in next section.
  • Theorem: Let $P$ be a permutation matrix. Then $P^{-1} = P^T$.

Determinant #

  • The determinant of a matrix A is denoted $\text{det}(A)$
  • Let $A = \begin{bmatrix}a & b \\ c & d \end{bmatrix}$
  • $\text{det}(A) = ad - bc$
  • $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix}d & -b \\ -c & a \end{bmatrix}$
  • So if $\text{det}(A) = ad - bc = 0$, then $A^{-1}$ doesn’t exist and $A$ is non-invertible.
  • A formula for the determinant of a 3×3 matrix:
    • Similar to the $n \times n$ matrix.

Inverses of special matrices #

Refers #

Words #

  • permutation [,pə:mju:’teiʃən] n. [数] 排列;[数] 置换
  • bijection [bai’dʒekʃən] n. [数] 双射
  • determinant [di’tə:minənt] adj. 决定性的 n. 决定因素;[数] 行列式