Week 10 - Vector Spaces, Orthogonality, and Linear Least-Squares #
Solving underdetermined systems #
- Important attributes of a linear system $Ax = b$ and associated matrix A:
- (example:$\left(\begin{array}{c c c c}1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4\end{array}\right)\left(\begin{array}{c} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_3\end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \\ 1\end{array}\right)$)
- The row-echelon form of the system.
- The pivots.
- the first nonzero entry in each row: 1, 2.
- The free variables.
- the columns that has no pivots: $\chi_1, \chi_3$
- The dependent variables.
- the columns that has pivots: $\chi_0, \chi_2$
- A specific solution.
- Often called a particular solution.
- The most straightforward way is to set the free variables equal to zero
- => $\chi_1 = \chi_3 = 0$
- => $\left(\begin{array}{c c c c}1 & 3 & 1 & 2 \\ 0 & 0 & 2 & 4\end{array}\right)\left(\begin{array}{c} \chi_0 \\ 0 \\ \chi_2 \\ 0\end{array}\right) = \left(\begin{array}{c} 1 \\ 1\end{array}\right)$
- => $x_p = \left(\begin{array}{c} 1/2 \\ 0 \\ 1/2 \\ 0\end{array}\right)$
- A basis for the null space.
- Often called the kernel of the matrix.
- $\chi_0 + 3\chi_1 + \chi_2 + 2\chi_3 = 0, 2\chi_2 + 4\chi_3 = 0$ => $\chi_2 = -2\chi_3, \chi_0 = -3\chi_1$
- $\begin{bmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \chi_1 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \chi_3\begin{bmatrix} 0 \\ 0 \\ -2 \\ 1\end{bmatrix}$
- So the basic for $\mathcal{N}(A) = \text{Span }(\begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 0 \\ 0 \\ -2 \\ 1\end{bmatrix})$
- A general solution.
- Often called a complete solution.
- given by:
- $\begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix} + \beta_0 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta_1 \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1\end{bmatrix}$
- A basis for the column space, $\mathcal{C}(A)$.
- Often called the range of the matrix.
- equal to the number of dependent variables.
- The columns that have pivots in them are linearly independent. The corresponding columns in the original matrix are also linearly independent:
- A basis for the row space, $\mathcal{R}(A) = \mathcal{C}(A^T)$.
- The row space is the subspace of all vectors that can be created by taking linear combinations of the rows of a matrix.
- List the rows that have pivots in the row echelon form as column vectors:
- Notice these are the first and third row of A.
- The dimension of the row and column space.
- = number of pivots
- = 2
- The rank of the matrix.
- = number of pivots
- = 2
- The dimension of the null space.
- = the number of non-pivots columns
- = 2
Orthogonal Vectors & Orthogonal Spaces #
- Vectors x and y are considered to be orthogonal (perpendicular) if they meet at a right angle: $$x^T y = 0$$
Normal Vector #
- The normal vector, often simply called the “normal,” to a surface is a vector which is perpendicular to the surface at a given point.
- For example:
- Define the plane as format: $Ax + By + Cz = D$
- Vector $\vec{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is normal to the plane.
- Vector $\vec{x_0} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$ is pointing to the plane.
- Vector $\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is pointing to the plane.
- Then $\vec{x} - \vec{x_0}$ should be on the plane and perpendicular to $\vec{n}$
- Then $(\vec{x} - \vec{x_0})^T \vec{n} = 0$
- $\begin{bmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{bmatrix}^T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$
- $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$
- So we can use $ax + by + cz = ax_0 + by_0 + cz_0$ to represent the plane.
- Define the plane as format: $Ax + By + Cz = D$
Cross Product #
- the cross product or vector product is a binary operation on two vectors in three-dimensional space ($\mathbb{R}^3$) and is denoted by the symbol ×.
- $\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \times \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 b_2 - a_2 b_1 \\ a_2 b_0 - a_0 b_2 \\ a_0 b_1 - a_1 b_0 \end{bmatrix}$
- Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b and thus normal to the plane containing them.
- Because $\begin{bmatrix} a_1 b_2 - a_2 b_1 \\ a_2 b_0 - a_0 b_2 \\ a_0 b_1 - a_1 b_0 \end{bmatrix}^T \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = 0$ and $\begin{bmatrix} a_1 b_2 - a_2 b_1 \\ a_2 b_0 - a_0 b_2 \\ a_0 b_1 - a_1 b_0 \end{bmatrix}^T \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = 0$
- So we can use vectors a and b to get n. ($n = a \times b$)
Visualizing a column space as a plane in R3 #
- For example:
- $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \end{bmatrix}$. $\text{rref }(A) = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- rref: reduced row-echelon form.
- $\mathcal{C}(A) = \text{Span }(\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}, \begin{bmatrix}1 \\ 1 \\ 4\end{bmatrix} )$
- Define $n$ is the normal vector to $\mathcal{C}(A)$, And vector $\begin{bmatrix}x \\ y \\ z\end{bmatrix}$ is point to the surface. Then:
- Use cross product, we get $n = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix} \times \begin{bmatrix}1 \\ 1 \\ 4\end{bmatrix} = \begin{bmatrix}5 \\ -1 \\ -1\end{bmatrix}$
- $n \cdot (\begin{bmatrix}x \\ y \\ z\end{bmatrix} - \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}) = 0$
- $5x - y - z = 0$ <=> $\mathcal{C}(A)$
Orthogonal Spaces #
- Definition: Let $V, W \subset \mathbb{R}^n$ be subspaces. Then $V$ and $W$ are said to be orthogonal iff $v \in V$ and $w \in W$ implies $v^T w = 0$. Denoted by $V \perp W$
- Definition: Given subspace $V \subset \mathbb{R}^n$, the set of all vectors in $\mathbb{R}^n$ that are orthogonal to $V$ is denoted by $V^{\perp}$ (pronounced as “V-perp”).
Fundamental Spaces #
Recall some definitions. Let $A \in \mathbb{R}^{m \times n}$ and have k pivots. Then:
- Column space: $\mathcal{C}(A) = {y|y = Ax}\subset \mathbb{R}^m$.
- dimension: k
- Null space: $\mathcal{N}(A) = {x|Ax = 0} \subset \mathbb{R}^n$.
- dimension: n - k
- $0$ is vector $\in \mathbb{R}^n$
- Row space: $\mathcal{R}(A) = \mathcal{C}(A^T) ={y|y = A^T x} \subset \mathbb{R}^n$.
- dimension: k
- Left null space: $\mathcal{N}(A^T) = {x|x^T A = 0^T} \subset \mathbb{R}^m$.
- dimension: m - k
- $0$ is vector $\in \mathbb{R}^m$
- Column space: $\mathcal{C}(A) = {y|y = Ax}\subset \mathbb{R}^m$.
Theorem: Let $A \in \mathbb{R}^{m \times n}$. Then:
- $\mathcal{R}(A) \perp \mathcal{N}(A)$.
- every $x \in \mathbb{R}^n$ can be written as $x = x_r + x_n$ where $x_r \in \mathcal{R}(A)$ and $x_n \in \mathcal{N}(A)$.
- $A$ is a one-to-one, onto mapping from $\mathcal{R}(A)$ to $\mathcal{C}(A)$.
- $\mathcal{N}(A^T)$ is orthogonal to $\mathcal{C}(A)$ and the dimension of $\mathcal{N}(A^T)$ equals $m-r$, where $r$ is the dimension of $\mathcal{C}(A)$.
For example: $A = \begin{bmatrix}2 & -1 & -3 \\ -4 & 2 & 6\end{bmatrix}$
- $T(x) = Ax$, $T: \mathbb{R}^3 \Rightarrow \mathbb{R}^2$
- $\mathcal{C}(A) = \text{Span }(\begin{bmatrix} 2 \\ -4 \end{bmatrix}) \subseteq \mathbb{R}^2$
- $\mathcal{N}(A^T) = \text{Span }(\begin{bmatrix} 2 \\ 1 \end{bmatrix}) \subseteq \mathbb{R}^2$
- $\mathcal{N}(A) = \text{Span }(\begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{3}{2} \\ 0 \\ 1 \end{bmatrix}) \subseteq \mathbb{R}^3$
- $\mathcal{R}(A) = \mathcal{C}(A^T) = \text{Span }(\begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}) \subseteq \mathbb{R}^3$
- => $\mathcal{R}(A) \perp \mathcal{N}(A)$
- => $\mathcal{C}(A) \perp \mathcal{N}(A^T)$
Approximating a Solution #
Find a line $y = \gamma_0 + \gamma_1 x$ to interpolate these points:
- $x = \left(\begin{array}{c} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_3 \end{array}\right) = \left(\begin{array}{c}1 \\ 2 \\ 3 \\ 4\end{array}\right) \text{ and } y = \left(\begin{array}{c} \psi_0 \\ \psi_1 \\ \psi_2 \\ \psi_3 \end{array}\right) = \left(\begin{array}{c}1.97 \\ 6.97 \\ 8.89 \\ 10.01\end{array}\right)$
Clearly, there is no line could go through all these points, then what is the best approximation?
Set $A = \begin{bmatrix}1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4\end{bmatrix}, b = \begin{bmatrix}1.97 \\ 6.97 \\ 8.89 \\ 10.01\end{bmatrix}$
We’ve learned before that $Ax=b$ has a solution iff $b \in \mathcal{C}(A)$. In other words, b is in the plane of $\text{Span}(a_1, a_2,\ldots, a_n)$.
So, here we are solving $Ax \approx b$.
Set the projection of b = $z$, $A\hat{x} = z$
We can get
- $b = z + w$ where $w^T v = 0$ for all $v \in \mathcal{C}(A)$.
Also $w \subset \mathcal{C}(A)^{\perp}$ => $w \subset \mathcal{N}(A^T)$. So, $A^Tw = 0$(same as $w^T A = 0^T$), which means
- $0 = A^Tw = A^T(b - z) = A^T(b - A \hat{x})$
- Rewrite it, we get $A^TA \hat{x} = A^T b$.
- This is known as the normal equation associated with the problem $A\hat{x} \approx b$.
Although $A^TA$ is nonsingular, then
- $\hat{x} = (A^T A)^{-1} A^T b$
And the vector $z \in \mathcal{C}(A)$ closest to $b$ is given by
- $z = A \hat{x} = A (A^T A)^{-1} A^T b$
This shows that if A has linearly independent columns, then $z = A \hat{x} = A (A^T A)^{-1} A^T b$ is the vector in the columns space closest to b. This is the projection of b onto the column space of A.
And the “best” solutionis known as the “linear least-squares” solution.
Refers #
- https://en.wikipedia.org/wiki/Row_and_column_spaces
- https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/defining-a-plane-in-r3-with-a-point-and-normal-vector
- https://en.wikipedia.org/wiki/Normal_(geometry)
- http://mathworld.wolfram.com/NormalVector.html
- https://en.wikipedia.org/wiki/Cross_product
Words #
- orthogonality [,ɔ:θɔɡə’næləti] n. [数] 正交性;相互垂直