Week 5 - Techniques of Differentiation #
The Product Rule #
- If f and g are both differentiable, then $$\frac{d}{dx}[f(x)g(x)]=f(x)\frac{d}{dx}g(x) + \frac{d}{dx}f(x)g(x)$$
- Two ways to prove
the area of rectangle
We start by assuming that
u = f(x)
andv = g(x)
.Then we can interpret the
product uv
as an area of a rectangleIf
x
changes by an amount $\Delta x$, then the corresponding changes inu
andv
are- $\Delta u = f(x + \Delta x) - f(x)$, $\Delta v = g(x + \Delta x) - g(x)$
The change in the area of the rectangle is:
- $\Delta (uv) = (u + \Delta u)(v + \Delta v) - uv = u\Delta v + v\Delta u + \Delta u\Delta v$ = the sum of the three shaded areas
If we divide by $\Delta x$, we get $$\frac{\Delta (uv)}{\Delta x} = \frac{u\Delta v}{\Delta x} + \frac{v\Delta u}{\Delta x} + \frac{\Delta u\Delta v}{\Delta x}$$
If we now let $\Delta x \to 0$, we get the derivative of
uv
(f(x)g(x)):$$\begin{aligned} \frac{d}{dx}(uv) &= \lim_{\Delta x \to 0}\frac{\Delta (uv)}{\Delta x} \\ &= \lim_{\Delta x \to 0}(u\frac{\Delta v}{\Delta x} + v\frac{\Delta u}{\Delta x} + \Delta u\frac{\Delta v}{\Delta x}) \\ &= u\lim_{\Delta x \to 0}\frac{\Delta v}{\Delta x} + v\lim_{\Delta x \to 0}\frac{\Delta u}{\Delta x} + (\lim_{\Delta x \to 0}\Delta u)(\lim_{\Delta x \to 0}(\frac{\Delta v}{\Delta x}) \\ &= u\frac{d}{dx}v + v\frac{d}{dx}u + 0 \cdot u\frac{d}{dx}v \end{aligned}$$
$\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
use limit theorem
$$\begin{aligned} \frac{d}{dx}(f(x) \cdot g(x)) &= \lim_{h \to 0}\frac{f(x+h) \cdot g(x+h)-f(x) \cdot g(x)}{h} \\ &= \lim_{h \to 0}\frac{f(x+h) \cdot g(x+h)-f(x+h) \cdot g(x)+f(x+h)g(x)-f(x) \cdot g(x)}{h} \\ &= \lim_{h \to 0}\frac{f(x+h) \cdot g(x+h)-f(x+h) \cdot g(x)}{h} + \lim_{h \to 0}\frac{f(x+h) \cdot g(x)-f(x) \cdot g(x)}{h} \\ &= \lim_{h \to 0}\frac{g(x+h)-g(x)}{h} \cdot \lim_{h \to 0}f(x+h) + \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} \cdot \lim_{h \to 0}g(x) \\ &= \frac{d}{dx}g(x)\lim_{h \to 0}f(x+h) + \frac{d}{dx}f(x)\lim_{h \to 0}g(x) \\ &= f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x) \\ \end{aligned}$$
In prime notion: $(f \cdot g)’=f \cdot g’+g \cdot f'$
The Quotient Rule #
If f and g are differentiable, then
$$\frac{d}{dx}[\frac{f(x)}{g(x)}]=\frac{\frac{d}{dx}f(x) \cdot g(x) - f(x) \cdot \frac{d}{dx}g(x)}{g(x)^2}$$
In prime notion: $(\frac{f}{g})’=\frac{g \cdot f’-f \cdot g’}{g^2}$
Higher Derivatives #
- If
f
is a differentiable function, then its derivativef'
is also a function, sof'
may have a derivative of its own, denoted by(f')' = f''
. - This new function $f’’(x)$ is called the second derivative of
f
because it is the derivative of the derivative off
. Using Leibniz notation, we write the second derivative ofy = f(x)
as - For example:
- $f(x) = x^3 - x$
- $f’(x)=3x^2-1$, $f’’(x)=6x$
- We can interpret
f''(x)
as the slope of the curvey=f'(x)
at the point(x, f(x))
. In other words, it is the rate of change of the slope of the original curvey=f(x)
.
- Take another sample:
- If
s=s(t)
is the position function of an object that moves in a straight line, we know that its first derivative represents the velocityv(t)
of the object as a function of time:- $v(t)=s’(t)=\frac{ds}{dt}$
- Thus the acceleration(the instantaneous rate of change of velocity with respect to time) function is the derivative of the velocity function and is therefore the second derivative of the position function:
- $a(t)=v’(t)=s’’(t)$
- or in Leibniz notation: $a=\frac{dv}{dt}=\frac{d^2s}{dt^2}$
- If
Concavit #
- If
f''(x) > 0
for allx
inI
, then the graph off
is concave upward onI
. - If
f''(x) < 0
for allx
inI
, then the graph off
is concave downward onI
. - inflection point
- A point
P
on a curvey = f(x)
is called an inflection point iff
is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward atP
.
- A point
Extreme Value #
Definitions #
- local maximum
f(c)
is a local maximum value forf
if there is someε > 0
, so that wheneverx
is in(c - ε, c + ε)
,f(c) >= f(ε)
.
- local minimum
f(c)
is a local minimum value forf
if there is someε > 0
, so that wheneverx
is in(c - ε, c + ε)
,f(c) <= f(ε)
.
- local extremum
- a local maximum or local minimum is called a local extremum.
- global maximum
f(c)
is a global maximum value forf
if wheneverx
is in the domain off
,f(c) >= f(ε)
.
- global minimum
f(c)
is a global minimum value forf
if wheneverx
is in the domain off
,f(c) <= f(ε)
.
Fermat’s Theorem (Find Extreme Value) #
- Suppose
f
is a function, defined on the interval $(a, b) \ni c$.- If
f(c)
is an extreme value off
, andf
is differentiable atc
, thenf'(c) = 0
; - If
f
is differentiable atc
, andf'(c) != 0
, thenf(c)
is not an extreme value.- In reverse, if
f(c)
is a local extremum, then eitherf'(c)
does not exist(like:f(x) = |x|
) orf'(c) = 0
.
- In reverse, if
- If
How do I differentiate e^x? #
why looking for
e
? we’re looking for a function that it’s derivative equal to itself: $f(x) = f’(x) = f’’(x)…$. Assuming $f(a) = f’(a) = f’’(a) = … = 1$, how to finda
?To function $\displaystyle g(x) = \lim_{h \to 0}\frac{x^h-1}{h}$, we know:
- $\displaystyle f’(2) = \lim_{h \to 0}\frac{2^h-1}{h} \approx 0.693$
- $\displaystyle f’(3) = \lim_{h \to 0}\frac{3^h-1}{h} \approx 1.099$
We also know it’s an continuous function, so there much be an
a
such that $\displaystyle f’(a) = \lim_{h \to 0}\frac{a^h-1}{h} = 1$We call the value: $e$, $\displaystyle \lim_{h \to 0}\frac{e^h-1}{h} = 1$
Now switch the variable to
h
so we can calculate the derivative of function: $f(x) = e^x$:- $$\begin{aligned} f’(x) &= \lim_{h \to 0}\frac{e^{x+h} - e^x}{h} \\ &= \lim_{h \to 0}\frac{e^{x}e^{h} - e^x}{h} \\ &= \lim_{h \to 0}\frac{e^{x}(e^{h} - 1)}{h} \\ &= e^{x} * \lim_{h \to 0}\frac{(e^{h} - 1)}{h} \end{aligned}$$
Since we already assume that $\displaystyle \lim_{h \to 0}\frac{e^h-1}{h} = 1$, we got: $$f’(x) = e^{x} \cdot 1 = e^{x} = f(x)$$
Review Questions #
- what is the production rule of two derivative functions?
- the quotient rule?
- what is the derivatives of $f(x) = x^3 - x$ and the derivative of the derivative of
f(x)
?- what can the second derivative tell about function
f(x)
? - what is inflection point?
- what can the second derivative tell about function
- definition of extreme values, aka local/global minimum/maximum?
- what is Fermat’s Theorem?
- how to prove the derivative of function$f(x) = e^x$ is itself?